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ABSTRACT

Suggesting Missing Information in Text Documents

Grant Michael Hodgson
Department of Computer Science, BYU

Master of Science

A key part of contract drafting involves thinking of issues that have not been addressed
and adding language that will address the missing issues. To assist attorneys with this task,
we present a pipeline approach for identifying missing information within a contract section.
The pipeline takes a contract section as input and includes 1) identifying sections that
are similar to the input section from a corpus of contract sections; and 2) identifying and
suggesting information from the similar sections that are missing from the input section. By
taking advantage of sentence embedding and principal component analysis, this approach
suggests sentences that are helpful for finishing a contract. We show that sentence suggestions
are more useful than the state of the art topic suggestion algorithm by synthetic experiments
and a user study.

Keywords: natural language processing, machine learning, contracts, missing information
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Chapter 1

Introduction

In the late 1960s Aluminum Company of America (ALCOA) entered into a long-term

agreement to provide aluminum for Essex Group, Inc. (Essex) [1]. As part of the agreement,

they included a complicated pricing formula that was meant to fluctuate proportionally with

the price of aluminum production. The pricing formula worked well for a number of years.

In the 1970s, however, the Organization of the Petroleum Exporting Countries (OPEC) took

actions to increase oil prices. The increase in oil prices greatly increased the cost of electricity

and therefore the non-labor costs of ALCOA’s aluminum production. The pricing formula

used in ALCOA’s agreement with Essex failed to account for this price increase, and ALCOA

was faced with potential losses of $75 million. To avoid the loss, ALCOA was forced to enter

into costly litigation over the contract [1]. If the contract drafters had thought to include

fluctuations in the price of electricity, perhaps litigation over the agreement could have been

avoided.

A key part of contract drafting involves thinking of issues that may arise and defining

the obligations of each party should the issue arise over the term of the contract. In other

words, attorneys drafting a contract often spend time trying to identify what might be missing

from a contract. Costly litigation may be more easily avoided if it were easier to identify and

suggest missing information from contracts.

Compared to other types of documents, legal documents and specifically contracts

have unique properties. Similar types of contracts tend to address similar types of issues.

Similar types of contracts also tend to share structure and address similar issues in the same

1
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sections as other contracts. This formulaic characteristic of contracts can be leveraged to

identify what might be missing from a contract. Comparing one section in a contract (an

input section) to many other similar sections from other contracts may allow a user to identify

what may be missing from the input section.

Comparing documents to determine what is different may be useful for other types

of legal documents as well. Although this paper focuses on contracts, we believe that our

solution to identifying what text is missing from a document would be useful for other legal

documents or other types of documents that follow a well-defined structure. It may also be

of interest to people who are unable to pay for expertise to draft a legal document. Our

solution could help them identify what may be missing in the document that they are using.

Previous approaches to suggesting missing information in a text document involve

suggesting topics. Topics are usually one or two words and thus cannot convey detailed

information. Even if a topic is suggested as missing the author may not necessarily know

what to say about the topic. In contrast, we will show that suggesting longer sequences of

words (such as sentences) can be much more useful.

We present a pipeline approach for identifying missing information within a document

by comparing the document to other similar documents. The pipeline will take a document

as input and will include 1) identifying documents that are similar to the input document;

and 2) identifying and suggesting sentences from the documents that are missing from the

input document. We present a technique that suggests missing information to a user who

can then choose whether to include the information in the document. In chapter 2 we will

discuss previous work that is related to suggesting missing information. In chapter 3 we will

discuss our approach in more detail. In chapter 4 we will discuss the results of our approach.

Chapter 5 contains our conclusion and potential future work.

2
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Chapter 2

Related Work

Identifying what is missing in a text document (e.g. a contract) is related to several

research areas in computer science such as inpainting, contract mining, document clustering,

text summarization, sentence embeddings, automatic topic suggestion, and translation using

deep neural networks. We briefly discuss each of these topics.

2.1 Inpainting and Scene Completion

Image processing has some similarities with finding missing information. Inpainting involves

restoring missing portions of an image to make it more visually plausible [7]. Typical

applications include removing logos from videos, digital reconstruction of images that have

faded, removing an object or person from an image, and filling in the space leftover [4].

Inpainting can be used to fix scratches, stains, or other large-scale missing regions by

interpolating based on other portions of the image that are not missing [4].

Scene completion is a related task that replaces a portion of an image with another

visually plausible portion from a different image [6]. A scene completion algorithm may use

semantic scene matching and local context matching to fill in missing objects in a picture [6].

Specifically, it involves finding a “subset of images depicting semantically similar scenes,”

finding “patches in [the] subset that match the context surrounding the missing region,” and

blending “in the most similar patches” [6]. To succeed at scene completion, “context encoders

need to both understand the content of the entire image, as well as produce a plausible

hypothesis for the missing part(s)” [14].

3
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2.2 Contract Mining and Document Clustering

Gao et al [5]. discuss techniques for extracting information from contracts. They suggest

creating a checklist based on the extracted information that can be used to make sure

an attorney has accounted for every important issue. The method involves extracting the

commonly occurring exception phrases for a domain of interest to build a vocabulary of

exceptions that arise in each domain [5]. The extracted vocabulary could then be used as

a checklist of items for a contract drafter to look for. However, the specifics of how the

above-mentioned vocabulary could be used is not discussed and it does not appear to have

been implemented.

In addition, our proposed technique relies partially on document clustering. Document

clustering will enable us to identify documents that are similar to an input document. Using

K means with term frequency inverse document frequency (TF-IDF) is a well-documented

technique that has proven effective in clustering documents [15].

2.3 Text Summarization

At first glance, text summarization appears to be somewhat related to identifying missing

information. Nenkova et al. [13] provide an overview of various text summarization techniques.

According to their overview, nearly all summarizers do some form of the following: 1) they

create an intermediate representation of the input text, capturing the key aspects of the

text; 2) they score sentences of the text based on the created representation; and 3) they

select several sentences based on the scores to create the final summary [13]. In some

approaches, “the optimal collection of sentences is selected subject to constraints that try to

maximize overall importance, minimize redundancy, and. . . maximize coherence” [13]. Text

summarization has some things in common with our problem. However, it fails to solve the

problem because text summarization merely creates an overall summary of all the documents

without identifying what may be missing from a document.

4
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2.4 Sentence Embeddings

Sentence embedding techniques are used to capture the semantic meaning of a sentence in a

vector representation. With good vectors, sentences with similar meaning will have similar

vector representations. This is useful because it allows a computer to determine semantic

similarity between sentences that may be worded differently but mean essentially the same

thing [9]. Several techniques exist for creating vector representations of sentences. Kiros

et al [9]. use an encoder-decoder model that tries to reconstruct the surrounding sentences

of an encoded passage. Their method relies on the sequential nature of sentences within a

document and the theory that sentences that appear in a similar context will have similar

meaning. In this way, “[s]entences that share semantic and syntactic properties are thus

mapped to similar vector representations.”

Kenter et al. [8] create sentence embeddings by averaging the word vectors within

a sentence. However, instead of using word embeddings created by techniques such as

word2vec [12] and GLoVe [16] , they optimize the training of the word embeddings for

sentence representation using a Siamese continuous bag of words (CBOW) neural network.

Sentence embeddings are helpful in grouping similar sentences together, allowing us to identify

what kinds of sentences may be missing from a contract.

2.5 Automatic Topic Suggestion

In addition, some research has been completed on suggesting missing topics from a document.

West et al. [20] propose a technique that begins with identifying topics in an input document.

They then identify missing topics by generalizing from a large background corpus using

principal component analysis. Finally, they rank and suggest missing topics to a user who

can then decide whether to discuss them in the input document. The approach of West et

al. relies heavily on Wikipedia. They use a fixed group of topics consisting of the set of all

Wikipedia articles because they assume that Wikipedia’s coverage is so vast that nearly any

5
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conceivable topic has a corresponding Wikipedia article. While this assumption may hold

true in general, in some specific applications there may not be a Wikipedia article about

every topic. For example, the merger and acquisition (M&A) domain has topics such as

antitrust reverse termination fee, and no pending litigation, which as of this writing, do not

contain articles in Wikipedia. In addition, it would be beneficial, especially for certain types

of legal documents, to suggest sentences instead of just topics. Compared to receiving a topic

suggestion, a user that receives a suggestion in the form of a sentence may require less time

to integrate the suggestion into a document. We take the approach of West et al. one step

further by suggesting sentences that could be added (possibly with some modification by the

user) to an input document and by eliminating the need to rely on Wikipedia.

2.6 Translation Using Deep Neural Networks

Translation techniques using sequence to sequence deep neural networks also appear to be

tangentially related. The problem of identifying missing text from a document can be thought

of as a sequence translation problem. That is, translating from the input section to the

missing text. Although this approach has never been applied to this problem, given the

recent success of Deep Neural Networks (DNNs) in translation, (see Bahdanau et al. [2] and

Luong et al. [11]) that approach would seem like an alternative worth considering. We use it

as a comparison with our approach.

6
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Chapter 3

Methods

Our approach for suggesting missing information includes gathering and preprocessing

contract data, clustering documents (contract sections) together, and identifying important

sentences that are missing from an input section by comparing the input section with a cluster

of similar sections. We have chosen to suggest sentences to a user because contract language

can often be copied and pasted into a new contract with only minor changes. Suggested

sentences may also capture important nuances that a suggested topic might miss.

We present two new methods for suggesting missing information. We will refer to

the method of West et al. simply as West and use it as the baseline for comparing the

two new methods. We will also present results from a neural translation model (NTM) as

applied to our problem. We use NTM as an additional comparison for completeness. We call

the first new method the Missing Text Determiner (MTD). It takes advantage of sentence

vectors and uses them to suggest missing sentences instead of missing topics. We call the

second new method Topic Recommender System (TRS) because it uses matrix factorization

techniques that have been used in recommender systems to suggest missing topics. TRS

identifies missing topics, but then uses the topics to find sentences that represent the missing

topics. TRS uses Latent Dirichlet Allocation (LDA) as a topic model to learn topics and

matrix factorization with gradient descent to make suggestions. We describe the two new

methods in more detail below.

7
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3.1 Suggesting Sentences with Principal Component Analysis (MTD)

We call our technique for suggesting missing sentences, Missing Text Determiner (MTD). It

involves i) finding documents that are similar to the input section (3.1.1); ii) creating clusters

of sentences (3.1.2); iii) performing principal component analysis (3.1.3); and iv) suggesting

the top N sentence clusters (3.1.4). We explain each step in further detail below. In addition,

we provide an example flow chart of the steps performed by MTD in Figure 3.1.

Figure 3.1: This flowchart shows the steps performed in Missing Text Determiner (MTD)

3.1.1 Finding Similar Documents

We begin by finding the documents that are most similar to the input document. We use term

frequency inverse document frequency (TF-IDF) to create a vector representation of the input

document and each document in the corpus. Then we compute the cosine distance between

the input document and each document in the background corpus. Our algorithm then uses

8
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only the N closest documents in the following steps (we will refer to these documents as the

similar documents).

3.1.2 Sentence Clustering

We create a list containing all sentences from the similar documents using the Natural

Language Tool Kit’s Punkt tokenizer [3]. However, some processing is needed because

sentences in contracts tend to be much longer than average sentences in English. They often

contain enumerated lists like the following:

This Plan of Merger has been duly executed and delivered by, and (assuming due

authorization, execution and delivery by Purchaser) constitutes valid and binding

obligations of, Company and is enforceable against Company in accordance with

its terms, except to the extent that (i) such enforcement may be subject to

applicable bankruptcy, insolvency, reorganization, moratorium or other similar

Laws, now or hereafter in effect, relating to creditors’ rights generally and (ii)

equitable remedies of specific performance and injunctive and other forms of

equitable relief may be subject to equitable defenses and to the discretion of the

court before which any proceeding therefor may be brought.

Although technically one sentence, these enumerated lists can often span the equivalent

length of many paragraphs. Using regular expressions (see appendix A), we split each item

in the list to form individual sentences. Thus each enumeration marker (e.g. (i)) becomes a

sentence break.

We compute sentence embeddings for each sentence using a Siamese CBOW [8] model

that we trained on the entire corpus of contracts. The sentences are clustered using the

sentence embeddings with K means. Cosine distance is used as the distance metric for the

clustering. This results in a group of C clusters (C = K, the number of clusters), each cluster

having a varying number of sentences contained within. We can also identify which document

each sentence originated from.

9
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3.1.3 Principal Component Analysis

Next, we create a matrix M for use in principal component analysis (PCA). The documents

D make up the rows, while the clusters C make up the columns, creating a D × C matrix.

For each position mij in M we count the number of sentences that document di has in cluster

cj. This results in a matrix where most values are 0s or 1s but occassionally a higher value

will appear.

Similar to West, we create a vector representation v of the input document which is

the same length and is filled in the same way as a row in M . Following the PCA algorithm, we

compute a covariance matrix and subtract the mean. We compute the eigenvectors and sort

them in descending order of their associated eigenvalues. This creates a matrix of eigenvectors

E. We take only the top K eigenvectors (the principal components) creating a matrix Ereduce.

Finally, we transform v into eigenspace and then back to its original space with the following

equation.

v′ = (vET
reduce)Ereduce (3.1)

3.1.4 Sentence Suggestion

Similar to West, which suggests missing topics, v′ will allow us to determine which types of

sentences are missing from v. We can create a reconstruction gain vector (as named in West)

with vsuggestion = v′ − v. This provides a ranking of each sentence cluster. If the jth value v′j

in the output vector v′ is high, but the corresponding value vj is low then the cluster cj is a

suggested cluster. Thus, a user should consider adding a sentence similar to a sentence found

in the cluster cj to input document D.

3.2 Topic Recommender System

The Topic Recommender System (TRS) uses a topic modeling approach to find missing

topics in an input document and then finds sentences that represent the missing topics. One

deficiency of West’s method is that its topics are obtained from Wikipedia article titles. Thus,

10
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topics not contained in Wikipedia cannot be suggested. To eliminate the dependency on

Wikipedia, we propose using Latent Dirichlet Allocation (LDA) to generate topics within a

cluster of similar documents. LDA defines a topic as a distribution over words and describes

a document as a distribution over topics.

TRS first computes a LDA model using all of the documents in a corpus. It then

creates a matrix R of size D × T where D is the number of documents in the corpus and

T is the number of topics. We use contract sections as documents as explained above. A

document will be deemed to contain a topic if the probability of the topic appearing in

the document is above a predefined threshold. Thus, each entry rij in R will contain a 1 if

document di contains topic j and 0 if it does not.

We use matrix factorization with gradient descent to identify and suggest missing topics

from an input document. Matrix factorization with gradient descent is a well-known technique

that has been described by Lee et al.[10] and was successfully used in a recommender system

by Takacs et al.[17] We follow the approach as described by Yeung [21]. For completeness, in

the remainder of this section we reproduce his implementation of matrix factorization with

gradient descent. We assume that we would like to discover K latent features that determine

whether a document contains any given topic. In matrix factorization, we seek to create two

matrices, P (size |D| ×K) and Q (size |T | ×K), that when multiplied together, create a

new matrix R′ that approximates R with missing values filled in. The filled in values will

indicate whether a topic should be included in a document or not. To create P and Q, we

initialize them with random values and then use gradient descent to adjust their values until

the difference between R′ and R is minimized. The error can be computed as

e2
ij = (rij − r′ij)2 = (rij −

k∑
i=1

pikqik)2 (3.2)

The gradients are then obtained with the following two equations.

11
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∂

∂pik
e2
ij = −2(rij − r′ij)(qkj) = −2eijqkj (3.3)

∂

∂qik
e2
ij = −2(rij − r′ij)(qkj) = −2eijpik (3.4)

The values of P and Q are then updated with the following equations until convergence.

p′ik = pik + α
∂

∂pik
e2
ij = pik + α(2eijqkj − βpik) (3.5)

q′ik = qik + α
∂

∂qkj
e2
ij = qkj + α(2eijpik − βqkj) (3.6)

where β is the regularization parameter. We use scikit-learn’s implementation of

non-negative matrix factorization with the default parameters [15]. The resulting matrix R

contains a row v′ that represents the input document. The scores in v′ are an approximation

of what topics should be contained in the input document. Thus, the values that are high in

row v′ but low in row v of the original matrix R represent topics that are missing from the

original input document. These are the topics that should be suggested for adding to the

original document.

We use the suggested topics to find sentences. Using the Siamese CBOW model, we

compute word vectors for words in each suggested topic. By averaging the first N word

vectors in the topic’s distribution of words we create a pseudo sentence vector that can then

be used to find similar vectors in the background corpus. However, as explained below in

the results section, we discovered that the sentences found in this manner did not appear to

represent the topic. We found that averaging the words in a topic was not an effective way

to identify sentences that reflected the words in the topic.

12
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Chapter 4

Results

Due to the nature of the problem we are trying to solve, evaluation can be somewhat

difficult. Like scene completion and identifying missing topics, identifying and suggesting

missing sentences is an inherently under constrained problem, because any text that is not

an exact match of what is included in the input document can be considered missing text [6].

In addition, unlike missing portions of an image which have a fixed size, documents can

be made arbitrarily large. It is difficult to know at what point a text document contains

all relevant information such that it cannot be improved by adding more. Despite these

difficulties, we use automatic approaches and a user study for evaluation as discussed in the

following sections.

4.1 Additional Technical Details

There are some additional technical details the reader should be aware of regarding the

implementation used in obtaining the following results. First, We separate some punctuation

from the neighboring words so that Python’s split function would return whole words with

no punctuation. In addition, We create vector representations of sentences using Siamese

CBOW. We trained the siamese CBOW model on our contract data using words that appear

four or more times in the corpus. This makes the training easier for the Siamese CBOW

model created by [8]. In total, there were approximately 40,000 vocabulary words for the

data sample scraped from the Electronic Data Gathering and Retrieval System (EDGAR).

13
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EDGAR is maintained by the Security and Exchange Commission (SEC) and is a good place

to find publicly available contract data.

We scraped 10 years (2006 to 2015) of S-4 forms from EDGAR and gathered the 1200

various merger and acquisition contracts which are typically found in those filings. The s-4

forms contained a mixture of different M&A contract types from different law firms. Using

regular expressions, we split the contracts at the section level. Splitting the contracts into

sections yielded 97,048 sections which are the documents discussed in section 3.1.

We cluster the sentences using NLTK’s implementation of K means [3]. We found

that using 1
8

of the number of sentences for the number of clusters worked well. We also

found that using between 200 to 300 similar documents worked best. The sentence vectors

were 300 dimensions.

4.2 Automatic Testing: Missing Text Determiner

We created automatic tests to obtain objective results and to enable us to perform much

more testing than would otherwise be possible using humans trained in contract drafting.

Our goal was to artificially create documents that were missing text by deleting a sentence

from the document. By deleting a sentence, we create a document that is missing text and

at the same time, we know what text is missing from the document. Thus, suggestions

made by MTD can be compared with the deleted sentence to determine how well MTD is

performing. We used two different types of tests to determine the effectiveness of the Missing

Text Determiner (MTD).

For the first test, we randomly chose an input section from the corpus and then deleted

a random sentence from the section. We did not use very small sections in our testing (i.e. we

did not use sections that contained 2 sentences or less). We included the original input section,

which contained the missing sentence, in the group of similar documents. Thus an exact copy

of the deleted sentence was always present in the documents the algorithm used. We then

determined whether the algorithm suggested a sentence that exactly matched the deleted

14
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sentence within the top 10 sentence clusters that it suggests. Using 200 similar documents,

we ran the test 1049 times and found an exact match 814 times, achieving an accuracy of

77.6%. Even with an exact copy of the deleted sentence in the 200 similar documents, the

algorithm does not obtain perfect results. We do not know exactly why this occurs but we

have some ideas. On some occasions, the algorithm may be suggesting clusters containing

sentences that are similar to the deleted sentence, but due to random variation, the exact

match of the deleted sentence was not placed in the best cluster by our clustering algorithm.

Thus, the sentence may not be suggested because of the cluster it is placed in.

The second test is the same as the first except that the original input section was

not included in the group of similar documents. Thus, an exact copy of the sentence is

not guaranteed to appear in the documents used by the algorithm. We created this test to

determine how well the algorithm would perform when the exact missing sentence is not

contained in the background corpus. To evaluate performance under this test, we show

histograms in Figure 4.1 containing the cosine distances between the deleted sentence and

each of the sentences contained in the top five recommended clusters. Both histograms in

Figure 4.1 contain cosine distance along the x-axis with distance frequency along the y-axis.

The histogram on the left shows the distribution of cosine distances between the deleted

sentence and every sentence in the top 5 recommended clusters. The histogram on the right

shows the distribution of distances between the deleted sentence and the closest sentence in

the top 10 suggested clusters.

To gain intuition on what different cosine distances may mean, we display some sample

deleted sentences along with their closest match (the sentence that had the minimum cosine

distance during the run) in table 4.1.
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Deleted Sentence Closest Sentence Distance

1 no Buyer Entity has repudiated or waived any
material provision of any such Contract; and

no Buyer Entity has repudiated or waived any
material provision of any such Contract; and

0.0

2 Conditions to the Obligations of Each Party . Section 7.01 Conditions to the Obligations of Each
Party .

0.102

3 a) The terms of each outstanding compensatory
option under any agreement , plan or arrangement
of Clearwire (the Clearwire Stock Option Plans)
to purchase shares of Clearwire Class A Common
Stock (a Clearwire Stock Option) , whether or not
exercisable or vested , shall be adjusted as neces-
sary to provide that , at the Effective Time , each
Clearwire Stock Option outstanding immediately
before the Effective Time will be converted into
an option to acquire , on the same terms and con-
ditions as were applicable under that Clearwire
Stock Option , the same number of whole shares
of Class A Common Stock (rounded down to the
nearest whole share) as the holder of the Clear-
wire Stock Option would have been entitled to
receive under the Merger had the holder exercised
the Clearwire Stock Option in full immediately
before the Effective Time , at a price per share
(rounded up to the nearest whole cent) equal to :

8 ,862 ,169 shares of Clearwire Class A Common
Stock were subject to outstanding Clearwire Stock
Options , 740 ,000 shares of Clearwire Class A
Common Stock were subject to outstanding Clear-
wire restricted stock units and 5 ,445 ,317 shares
of Clearwire Class A Common Stock were autho-
rized and reserved for future issuance under the
Clearwire Stock Option Plans ,

0.158

4 Until and unless each party has received a counter-
part hereof signed by the other party hereto , this
Agreement shall have no effect and no party shall
have any right or obligation hereunder (whether
by virtue of any other oral or written agreement
or other communication ).

Any such counterpart may be delivered by fac-
simile or other electronic format (including .pdf
).

0.268

5 REPRESENTATIONS AND WARRANTIES OF
CAPITAL PACIFIC AND THE BANK .

ARTICLE IV REPRESENTATIONS AND WAR-
RANTIES OF BANK

0.317

6 Except as would not reasonably be expected to
have , individually or in the aggregate , a RG
Material Adverse Effect , RG and its Subsidiaries
are (and since January 1 , 2014 have been) in
compliance with the terms of all such Permits .

b) Except as would not , individually or in the
aggregate , reasonably be expected to have a
Parent Material Adverse Effect , Parent and each
of its Subsidiaries is , and since January 1 , 2012
has been , in compliance with ,

0.345

7 Except as set forth in Section 2.22 of the Edge
Schedule , Edge is not obligated , by virtue of a
prepayment arrangement , make-up right under a
production sales contract containing a take or pay
or similar provision , production payment or any
other arrangement , to deliver hydrocarbons hav-
ing a value in excess of $500 ,000 attributable to
the Edge Properties at some future time without
then or thereafter receiving full payment therefor
.

Neither ANB nor any of the ANB Subsidiaries ,
nor , to the Knowledge of ANB , any other party
thereto , is in breach of any of its obligations under
any such agreement or arrangement , except as
set forth in Section 3.4(s) of the ANB Disclosure
Schedule .

0.469

8 Section 2.7 Exchange Agent , Depositary and
Clearance System Arrangements .

to terminate the Starwood ESPP effective imme-
diately prior to the Closing Date .

0.579

Table 4.1: This table gives examples of sentences across a spectrum of distances. Sentences within .15 tend to be very similar.
On occasion, sentences greater than .15 are very similar (e.g. row 6) and sentences that have a close cosine distance are not as
similar as might be expected (e.g. rows 3, 4)

16



www.manaraa.com

0.0 0.5 1.0 1.5 2.0
Cosine Distance from Deleted Sentence

0

500

1000

1500

2000

2500

3000
F

re
qu

en
cy

Distribution of Top 5 Clusters

0.0 0.5 1.0 1.5 2.0
Cosine Distance from Deleted Sentence

0

50

100

150

200

250

F
re

qu
en

cy

Distribution of the Closest Matches

(a) Distribution of suggested sentences.

Figure 4.1: The histogram on the left shows the distribution of cosine distances between the deleted sentence and every sentence
in the top 5 recommended clusters. The histogram on the right shows the distribution of distances between the deleted sentence
and the closest sentence (measured by cosine distance) in the top 10 suggested clusters. The goal was to see if the algorithm
could recommend a sentence similar to one that was deleted from the input section.

It is important to note that there may be more than just the deleted sentence missing

from the input section. Identifying missing text is difficult because it is possible to add any

amount of text to a document. Thus even though there are many sentences suggested that

do not closely match the deleted sentence (as seen in the above histograms), they may, in

some situations, be useful for completing the input section.

We found that sentences that were within cosine distance of .15 tended to be very

similar to each other. We make the assumption that an attorney would be able to take a

sentence that is within .15 cosine distance away from a missing sentence and easily modify it

to fit her needs. To show that this is true we have created Table 4.2, which shows examples

of sentence pairs that were about .15 cosine distance or less. Thus, during the second test

we considered each iteration that found a closest matching sentence (within the top 10

recommended clusters) .15 or less to be a hit and any iteration with a closest matching

sentence greater than .15 to be a miss. Given these assumptions, we compute accuracy for

the second test.
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Deleted Sentence Closest Sentence Distance

no Buyer Entity has repudiated or waived any material provision
of any such Contract; and

no Buyer Entity has repudiated or waived any material provision of
any such Contract; and

0.0

has used or is using any corporate funds for any direct or indi-
rect unlawful payments to any foreign or domestic governmental
officials or employees ,

has used or is using any corporate funds for any direct or indirect
unlawful payments to any foreign or domestic governmental officials
or employees ,

0.0

The Company shall have delivered to Parent a certificate , dated
the date of the Closing , signed by a duly authorized officer of
the Company , certifying as to the satisfaction of the conditions
specified in Section 8.02(a) and Section 8.02(b ).

The Company shall have delivered to BioSante a certificate , dated
the date of the Closing , signed by a duly authorized officer of the
Company , certifying as to the satisfaction of the conditions specified
in Section 8.02(a) and Section 8.02(b ).

0.013

all assets reflected on the Potomac Unaudited Interim Balance
Sheet; and

all assets reflected on the Acquiror Unaudited Interim Balance Sheet;
and

0.0757

Conditions to the Obligations of Each Party . Section 7.01 Conditions to the Obligations of Each Party . 0.102
The obligation of CFC to consummate the Merger is also subject
to the fulfillment or written waiver by CFC prior to the Effective
Time of each of the following conditions :

The obligation of VCB to consummate the Merger is also subject to
the fulfillment , or written waiver by VCB prior to the Effective Date
, of each of the following conditions :

0.108

elect to the Board of Directors of Parent any person who is not a
member of the Board of Directors of Parent as of the date hereof ;

elect to the Board of Directors of the Company any person who is not
a member of the Board of Directors of the Company as of the date
hereof ;

0.113

the directors of Merger Sub immediately prior to the Effective
Time shall be the directors of the Surviving Corporation and

Each of the parties hereto shall take all necessary action to cause the
directors and officers of Merger Sub immediately prior to the Effec-
tive Time to be the directors and officers of the Surviving Corporation
immediately following the Effective Time , until their respective suc-
cessors are duly elected or appointed and qualified or their earlier
death , resignation or removal in accordance with the certificate of
incorporation and by-laws of the Surviving Corporation .

0.128

(g) As soon as practicable after the Effective Time , each holder
as of the Effective Time of any of the shares of MT Common
Stock and MT Convertible Preferred Stock to be converted by
such holder as elected by such holder as above provided , upon
presentation and surrender of such shares to United , shall be enti-
tled to receive in exchange therefor the number of uncertificated ,
book-entry shares of United Stock pursuant to Section 14-2-626 of
the Code and/or cash to which such shareholder shall be entitled
according to the terms of this Agreement .

(f) As soon as practicable after the Effective Time , each holder as of
the Effective Time of any of the shares of AEB Stock to be converted
as above provided , upon presentation and surrender of the certificates
for such shares to Fidelity , shall be entitled to receive in exchange
therefor the number of uncertificated , book-entry shares of Fidelity
Stock pursuant to Section 14-2-626 of the Georgia Code to which such
shareholder shall be entitled according to the terms of this Agreement
.

0.132

Each of Company and its Subsidiaries has the corporate or organi-
zational power to own its properties and to carry on its business as
now being conducted and as currently proposed to be conducted
and is duly qualified to do business and (to the extent applicable
in its jurisdiction of organization) is in good standing in each juris-
diction in which it conducts its business , subject in each case to
such exceptions as would not have a Company Material Adverse
Effect .

(b) The execution of this Agreement and the delivery hereof to the
Purchaser and the sale contemplated herein have been , or will be
prior to Closing , duly authorized by the Company’s Board of Di-
rectors and by the Company’s stockholders having full power and
authority to authorize such actions .

0.133

Absence of Certain Changes or Events . Section 3.12 Absence of Certain Changes or Events . 0.138
Without limiting the foregoing , it is understood that any viola-
tion of the foregoing restrictions by the Company’s Subsidiaries or
Representatives shall be deemed to be a breach of this Section 5.3
by the Company unless such violation is committed without the
Knowledge of the Company and the Company uses its reasonable
best efforts to promptly cure such violation once the Company is
made aware of such violation .

Without limiting the generality of the foregoing , the Company ac-
knowledges and agrees that , in the event any officer , director or
financial advisor of the Company takes any action that if taken by
the Company would be a breach of this Section 7.11 , the taking
of such action by such officer , director or financial advisor shall be
deemed to constitute a breach of this Section 7.11 by the Company .

0.144

Notwithstanding the foregoing provisions of this Section 5.08 , no
representation or warranty is made by Parent with respect to in-
formation or statements made or incorporated by reference in the
Offer Documents which were not supplied by or on behalf of Parent
or Merger Sub .

Notwithstanding the foregoing provisions of this Section 5.12 , no rep-
resentation or warranty is made by Parent with respect to information
or statements made or incorporated by reference in the Form S-4 , the
Joint Proxy Statement or the Debt Offering Documents which were
not supplied by or on behalf of Parent .

0.151

Table 4.2: This table shows examples of deleted sentences with their closest matching sentence found during an iteration of the
algorithm. The cosine distance is reported on the far right column. Each example is around .15 cosine distance or below. The
examples show that sentences around .15 cosine distance tend to be very similar.

Table 4.3 shows the accuracy for varying cutoff distances. MTD achieves 58.77%

accuracy if the cutoff distance is .15. Because a cutoff distance of .15 is somewhat arbitrary,

we also include additional higher cutoff distances which, as expected, show an increase in

accuracy. As we increase the cutoff distance to .3, the accuracy improves to 73.06%. Based

on our observations of sentence pairs, as the distance increases beyond .3, sentences begin to

appear very different. We believe using a cutoff distance beyond .3 begins to make less sense.

However, it is important to note that occasionally even sentences that are .2 to .4 cosine
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distance away may appear very similar to a reader because we can recognize things such as

different law firm names to be minor differences (e.g., see row 4 in Table 4.1). In addition,

although rare, sometimes sentences that are only .2 away can be very different from each

other.

≤ .15 ≤ .2 ≤ .3

58.77% 64.08% 73.06%

Table 4.3: Accuracy for the second test (where the input section and deleted sentence were not included in the similar documents).
We consider an iteration to be a hit if there is a sentence with a cosine distance less than or equal to .15 within the top 10
recommended clusters as compared to the deleted sentence. The other two columns show what the accuracy would be if we
relaxed our assumptions to .2 and .3 cosine distance.

4.3 User Study

In addition to automatic testing, we created a user study to determine how useful MTD is for

people tasked with drafting a contract.1 With a user study we are able to show that MTD is

useful in a practical application. For the user study, we used 30 different sections from merger

and acquisition contracts. We used a mixture of different section types including some that

are boilerplate (these types of sections do not change much from contract to contract) and

some that are highly negotiated between the parties in a contract (meaning that they tend to

vary much more than other sections). However, we put a slight emphasis on definitions and

termination sections because these types of sections are highly negotiated. Suggestions for

these kinds of sections would be of great interest to lawyers because the suggestions would

give them a better perspective on how the current contract compares to other contracts. This

perspective might be otherwise unattainable without the ability to examine a large corpus of

contracts as MTD does.

To perform the user study, we created a website that would show the input section,

a group of recommendations from MTD, and a group of recommendations from West. We

decided to limit MTD to the first 3 sentences of each of the top 5 clusters because we felt

1Approval was obtained from Brigham Young University’s Institutional Review Board.
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that including more would be too tedious to read for the user study. In practice, an attorney

would be able to look at more recommendations from MTD depending on her interest level.

We showed the top 20 suggested topics from West. Each algorithm was rated on a scale

of 1 to 5, with 1 being not very useful, 3 being hard to tell, and 5 being very useful. The

instructions we gave to the users can be found in Appendix B.

We received submissions from 21 users. Each user was a law student who had completed

at least a contract class and had some experience during the summer after their first year of

law school doing legal internship work. In addition, many of the students had completed a

merger and acquisition course, a business organizations course, and other business related

courses. To avoid potential bias, each user was shown the documents in random order.

After receiving the submissions, we averaged the scores across all documents. Thus,

each document had an average MTD score and an average West score. The average score for

MTD was 3.599 and 2.859 for West. We then performed a 1 tailed, paired t-test (using the

differences calculated by subtracting the West scores from the MTD scores) to determine

whether the MTD scores were greater than the West scores. The p-value was .00028 and

thus statistically significant at the .05 level.

4.4 Topic Recommender System Results

Our proposed Topic Recommender System (TRS) was not very helpful for suggesting missing

information. As mentioned above, our ideas for locating full sentences that are representative

of Latent Dirichlet Allocation (LDA) topics did not appear to be very effective. We found

that averaging word vectors in a topic does not seem to be a good technique for finding

sentences that represent the topic. We found that the sentences that were returned as the

closest matching sentences (smallest cosine distance) were not very similar to the topic. For

the most part, the closest matching sentences did not share many words with the topic and

did not appear to be closely related to the topic. Although a more elaborate study may be

needed to determine why this technique did not work well, one potential reason may be that
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the words included in a topic did not include common words that are otherwise included in

a typical sentence. It is possible that without these common words included, the sentence

vectors created for the topics were not accurate representations of a typical sentence within

that topic. Because the Missing Text Determiner (MTD) was achieving good results and

TRS was not, we used only MTD in the user study and the qualitative comparison with

West.

4.5 Neural Translation Model Results

Identifying missing text can be addressed with a translation model. A corpus can be created

by removing some amount of text from many different documents. Thus the corpus would

consist of input document text (which is artificially missing information) that is paired with

its missing text. Thus a model can be trained to predict the missing text based on the text

of an input document. We use a preexisting neural machine translation model created by

Luong et al. [18]. The model is a sequence to sequence model and uses word embeddings and

an attention mechanism.

We trained the Neural Machine Translation model (NMT) [18] using data generated

from the corpus of approximately 1200 contracts (containing 97,048 sections) scraped from

EDGAR. The training data was generated by randomly removing sentences from the contract

sections. Training ran for 9 days on a Titan X pascal architecture GPU.

The results obtain by this model were poor. Only 15% of the sentences were usable,

for example: “The Registration Statement will comply as to form with the requirements

of the Securities Act and the rules and regulations thereunder.” 45% of the sentences

would have required editing to make sense, for example “The table of contents and headings

contained herein shall be deemed to be followed by the words without limitation.” In

this case it takes a little imagination to make this sentence into something that might be

useful. The words following “deemed” make no sense. It would need to be edited to say

something like “The table of contents and headings contained herein shall be deemed to
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have no effect on the interpretation of the agreement.” 40% of the sentences make no sense

at all, such as “The parties shall cooperate with the other party to the other party to the

transactions contemplated by this Agreement and the transactions contemplated hereby and

the transactions contemplated hereby and thereby and the transactions contemplated hereby

and thereby and the transactions contemplated hereby shall be effective by the SEC or the

other transactions contemplated by this Agreement and the.” Which has no useful meaning

and it is hard to even imagine what this might be referring to.

4.6 Qualitative Results Using an Additional Data Set

To determine whether MTD would be effective on other datasets and to further show how

MTD is an improvement on West, we tested MTD on the Congressional Record corpus. This

allows us to make a direct comparison with West because this corpus was also used by West

et al.[20] The data set “consists of all debates from the House of Representatives of 2005” [20].

It was originally created by Thomas et al. [19] We trained siamese CBOW [8] on the dataset

and then ran MTD as described above, using Mark Udall’s October 2005 speech (nothing

was removed from the speech) as the input document. Like West et al., we did not include

text from the debate that Udall’s speech occurred in. Table 4.4 shows the results suggested

by West as reported in their paper [20].
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Top 20 Topics Suggested by West

Plaintiff
Class Action Fairness Act of 2005

Judiciary
U.S. District Court for the Middle District of Florida

Jury
Will (Law)

Due Process
Trial De Novo

Tort
Advance Health Care Directive

Attorney General
Judge

Supreme Court of the U.S
State Law
Liability

Jurisdiction
Damages

Forum Shopping
U.S. Court of Appeals for the Second Circuit

Product Liability

Table 4.4: A reproduction of the top 20 suggested topics for a U.S. Congress speech on the Lawsuit Abuse Reduction Act of
2005 as reported by West et. al [20]. A dataset of Congressional speeches was used as the background corpus.

Table 4.5 shows MTD results along with topic results reported by West et al. that

appear to match the MTD results. The sentences we present all appeared in the top 10

recommended sentence clusters. By comparing the suggested sentences and topics, we can

see that the sentences not only contain the topic, but also indicate to a user what should be

said about the topic. Sentences provide much more context to a user, allowing them to make

more sense of the individual topics contained within the sentences. For example, in row 4 of

Table 4.5, we see that a user should possibly be concerned about legislation that overrides

beneficial state laws. If the topic “state law” is suggested without context, a user may remain

confused about what to say about the topic or why “state law” is an important topic.

In addition, full sentences are able to link multiple topics together, allowing a reader to

see how the topics are related to each other. Row 2 of Table 4.5 provides context for the topics

“Product Liability” and “Damages.” Clearly, product liability cases will almost always involve

damages, but by suggesting a full sentence, the user is able to learn (according to one opinion)

that the product liability cases and associated damages are becoming overburdensome. By
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suggesting full sentences, the user has more context and is better able to make a decision

about what to write concerning multiple topic combinations.

MTD Sentence Recommendations Matching West Topics

1 however , if a court finds that the citizenship of the other
class members is not widely dispersed , the opposite
balance would be indicated and a federal forum would
be favored .

Class Action Fairness Act of
2005, Forum Shopping

2 unfortunately , the food industry has been targeted
by a variety of unfounded legal claims which allege
businesses should pay monetary damages and be subject
to equitable remedies based on novel legal theories of
liability for the overconsumption of its legal products .

Liability, Product Liability,
Damages

3 the sponsors believe that one of the significant problems
posed by multistate class actions in state court is the
tendency of some state courts to be less than respectful
of the laws of other jurisdictions , applying the law of one
state to an entire nationwide controversy and thereby
ignoring the distinct and varying state laws that should
apply to various claims included in the class , depending
upon where they arose .

Jurisdiction, State Law,
Class Action Fairness Act of
2005

4 once again , mr. speaker , we have before us a bill that
would sweep aside generations of state laws that protect
consumers .

State Law

5 it is the sponsors ’ intent that although remands of indi-
vidual claims not meeting the section 1332 jurisdictional
amount requirement may take the action below the
100-plaintiff jurisdictional threshold or the $ 5 million
jurisdictional amount requirement , those subsequent
remands should not extinguish federal diversity juris-
diction over the action as long as the mass action met
the various jurisdictional requirements at the time of
removal .

Jurisdiction, Plaintiff, Class
Action Fairness Act of 2005,
Damages

6 encourage the executive branch to follow a doctrine of
non-acquiescene by not finding a judicial decision affect-
ing one jurisdiction to be binding on other jurisdictions
.

Jurisdiction

Table 4.5: This table shows the power of suggesting full sentences as opposed to traditional topics. The left column contains
sentences recommended by MTD and the right column contains suggested topics as reported by West et. al [20]. By suggesting
sentences, MTD is not only able to suggest a topic, but it also indicates to a user what should be said about the topic. The
recommended sentences all appeared within the top 10 recommended sentence clusters.
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Chapter 5

Conclusion

We have presented a new algorithm called Missing Text Determiner (MTD) that is

able to make text suggestions to add to a document. MTD takes advantage of sentence

vectors, clustering, principal component analysis (PCA), and a background corpus of text to

make suggestions. MTD suggestions have been shown to be more useful to users interested in

drafting merger and acquisition agreements than the current state of the art topic suggestion

algorithm created by West et al. [20]. Our results suggest that providing sentences is more

useful than topics for enabling human users to determine what is missing from a text

document. Our results also suggest that MTD is more effective than a traditional neural

machine translator and the topic recommender system for suggesting missing text. Future

work may include adding the sentences to the input document in a way that makes sense

with the document overall, or generating new sentences that would be useful for the input

text document.
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Appendix A

Regular Expressions for Splitting Sentences

def split_up(text):

sentences = re.split(’ \([A-z0-9][A-z0-9]?[A-z0-9]?[A-z0-9]?\) ’, text)

return sentences

def separate_punctuation():

with open(’1200_toronto_style.txt’, ’r’) as in_f:

lines = in_f.readlines()

print "finished reading ", len(lines), " lines"

match1 = re.compile(r’[;|.|(|)|"|:]+\s*$’)

with open(’1200_toronto_style_punc.txt’, ’w+’) as out_f:

for line in lines:
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Appendix B

User Study Instructions

The following instructions were given to our user study participants.

In this user study, you will be shown various sections of M&A agreement text.

For each example, imagine that you are an attorney trying to finish writing the

example section. There will be recommendations of things to include in the

section from two different algorithms that are intended to help an attorney finish

writing the section.

Please rate the suggestions from each algorithm on how helpful, in your opinion,

they seem to be for completing the section (1 being not very useful and 5 being

very useful).

One algorithm suggests general topics to discuss in the section. It will suggest

20 topics sorted by how strongly the topic is recommended (it considers the first

topic to be its best recommendation). The other algorithm suggests specific

contract language to add to the section. It recommends groups of sentences. The

top recommended group is Tier 1, the second most recommended group is Tier 2,

and so on. You may stop at any time and your responses will be recorded. To be

eligible for the gift card, please spend 1 hour providing responses. There are 30

sample agreement texts.
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